Марафон ИТ-соревнований 2021

Управление рисками бурения

Решение задач геомеханического моделирования и анализа устойчивости ствола наклонно-направленных и горизонтальных скважин.

РН-СИГМА - Управление рисками бурения

Что нового

Новые версии «РН-СИГМА» выпускаются каждые 4 недели.

Версия от 09.04.2021

Версия от 09.04.2021

Мы добавили:

  • возможность создания 1D модели УСС, которая представляет собой набор ГИСов, содержащий информацию о механических, прочностных и иных свойствах, а также напряжённом состоянии скважины
  • возможность загрузки зон только с кровлями или по данным маркеров
  • инструмент построения пользовательского набора точечных данных
  • модуль «Операции» для точечных данных
  • расчет производной в операции ГИС
  • описание в окно операций ГИС
  • диаграмму разрушения цементного кольца в методе «Расчет устойчивости цементного кольца»
  • перемещаемую линию отметки глубины в методы «Расчет устойчивости цементного кольца» и «Расчет пескопроявления»
  • дерево для управления стилями и видимостью объектов в окно 3D
  • расчёт кластеров по литологии, отдельно и совместно с расчетом по зонам в модуле Кластеризация

Кроме того:

  • расчеты теперь проводятся в MD (в прошлых версиях расчеты проводились в TVD, что не позволяло учитывать горизонтальные участки скважины)
  • объединены методы «Реактивация трещин» и «Потенциал реактивации трещин»
  • стал доступен анализ данных профилемера (двухрычажный каверномер)
  • в методе «Реактивация трещин» расчет дополнен выбором глубины и визуализацией диаграммы Мора
Версия от 16.02.2021

Версия от 16.02.2021

Мы добавили:

  • новое окно для отображения данных ГТИ от времени, позволяющее формировать отдельные графики в виде ломаных и шкал значений, а также сохранять полученную структуру графиков в шаблоны
  • возможность отображать зоны в виде закрашенного интервала на отдельном треке в рамках планшета с подписью по центру

Кроме того:

  • модифицирована опция заливки на планшете - теперь заливку можно задавать одним цветом и устанавливать ее с обеих сторон от кривой одновременно, также реализовано сохранение опции «До кривой»
  • полностью обновлено руководство пользователя
Версия от 21.12.2020

Версия от 21.12.2020

Мы добавили:

  • зависимость прочности от размера отверстия и гранул материала в расчет пескопроявления
  • сохранение результата расчета с ростом трещины только в одну сторону (модуль автоГРП)
  • обработку случая, при котором заданное забойное давление больше давления пересечения границ интервала наличия данных (модуль автоГРП)
  • отображение верхнего и нижнего предела плотности реактивации в методе «Расчет устойчивости ствола скважины» при включенной опции «Плоскости ослабления»

Кроме того:

  • в окне операций с ГИС расчет кривой тренда теперь проводится для всей траектории скважины (ранее кривая тренда строилась только для глубин исходной кривой ГИС)
  • доработан алгоритм расчета в методе «Динамический расчет УСС с учетом поротермоупругости»
Версия от 09.11.2020

Версия от 09.11.2020

Мы добавили:

  • 3D отображение формы ствола в модуле анализа данных каверномера
  • учет позиционирования рычагов каверномера при отображении и анализе данных многорычажного каверномера
  • операцию сдвига кривой ГИС по MD

Мы реализовали:

  • модуль динамического моделирования с возможностью выбора функции для изменения входных параметров во времени
  • метод «Динамический расчет УСС с учетом поротермоупругости»
  • метод «Динамический расчет с учетом вязкоупругости» (модель Бюргера)
  • учет глинистой корки и учет пластических свойств материалов в методе «Расчет УСС»
  • метод «Расчёт пескопроявления» (модели Хеттема и Уиллсона)
  • метод «Расчёт устойчивости цементного кольца»

Версия от 01.10.2020

Версия от 01.10.2020

Мы добавили:

  • операции для осреднения, сдвига, растяжения и очистки значений кривых ГИС
  • окно 3D в меню Инструменты, а также возможность сохранять состояние этого окна в отдельный элемент проекта
  • конвертер для единиц измерения

Мы реализовали:

  • отображение куммулятивной кривой и квантилей в окне гистограмм, а также отображение накопленных гистограмм
  • метод Трауготта для расчета синтетической плотности
  • модификацию расчета динамической добавки к плотности БР
Версия от 13.08.2020

Версия от 13.08.2020

Мы добавили:

  • раскраску по фильтрам в окне кроссплота и в окне гистограммы
  • отображение статистики по кластерам в окне кластеризации
  • метод Миллера и эмпирическое соотношение Amoco для расчета синтетической плотности
  • линейное преобразование и растяжение/сжатие в операции над кривой ГИС

Мы реализовали:

  • модуль определения тектонического режима
  • возможность задания секций внахлест в окне конструкции
  • сортировка по глубинам при загрузке кривых ГИС
Версия от 17.07.2020

Версия от 17.07.2020

Мы добавили:

  • возможность задания секций открытой части ствола в окне конструкции скважины
  • отображение и редактирование параметров траектории: высота стола ротора, высота уровня земли, высота устья, высота локального уровня моря
  • учет трендов нормального уплотнения при переносе свойств
  • сохранение нанесенных полигонов в окне кроссплота

Мы реализовали:

  • опциональный вывод коэффициента детерминации R^2 в формуле кривой на графике, а также выбор шрифта для подписи с формулой в окне кроссплота
  • модель связанной поротермоупругости в расчете критических плотностей
Версия от 22.06.2020

Версия от 22.06.2020

Мы добавили:

  • расчет высоты трещины автоГРП на нагнетательной скважине
  • расчет порового давления в песчанистом теле, заключенном в глинах (учет эффекта центроида)
  • возможность построения зависимостей по нескольким скважинам в окне кроссплота
  • возможность загружать траекторию, используя 3 кривые: глубина, зенит, азимут (WITSML-клиент)
  • таблицу для отображения информации в окно предварительного просмотра (WITSML-клиент)

Мы реализовали:

  • алгоритм оценки значений максимального и минимального горизонтальных напряжений по данным скважинного имиджера
  • алгоритм оценки значений максимального горизонтального напряжения и его азимута по данным скважинного имиджера о направлении и ширине вывалов
  • синхронизацию данных при изменении каротажей (при расчетах в окне УСС, при расчете рабочего процесса, при обновлении через WITSML-клиент)
Версия от 19.05.2020

Версия от 19.05.2020

Мы добавили:

  • опцию расчета критических плотностей, стереограмм, диаграмм напряжений, синтетических имиджей и каверномера с учетом анизотропии упругих свойств
  • расчет статических упругих свойств по модели эффективной слоистой среды
  • возможность отключения от WITSML-сервера

Мы реализовали:

  • загрузку данных перетаскиванием файла в соответствующий элемент проекта (drag-and-drop)
  • просмотр и редактирование параметров методов в менеджере рабочих процессов
  • окно операций над кривыми, включающее построение тренда, интерполяцию, осреднение значений по вейвлетам, осреднение значений по фациям
Версия от 22.04.2020

Версия от 22.04.2020

Мы добавили:

  • загрузку и визуализацию кубов, карт и полигонов;
  • модуль кластеризации, включающий в себя разбиение на кластеры методами машинного обучения;
  • методы расчета экспонент для прогноза зон АВПД с помощью метода Итона.

Мы реализовали:

  • построение куба из набора ГИС и построение профилей свойств из куба;
  • операцию интерполяции свойств куба;
  • визуализацию формы скважины, используя данные многорычажных каверномеров.
Версия от 18.03.2020

Версия от 18.03.2020

Мы добавили:

  • учет плоскостей напластования при расчете критических плотностей;
  • расчет реактивации трещин.

Мы реализовали:

  • расчет свойств модели по фациям с учетом / без учета зон;
  • методы оценки физико-механических свойств пород по данным ГИС, ГТИ.
Версия от 14.02.2020

Версия от 14.02.2020

Мы добавили:

  • вывод угла внутреннего трения для каждого заданного круга Мора в паспорт прочности;
  • возможность отображать ось глубин на планшет с осью времени;
  • возможность на выбранной глубине задавать входные параметры с клавиатуры в окне построения стереограмм;
  • учет осмотических напряжений при расчете критических плотностей.
Версия от 15.01.2020

Версия от 15.01.2020

Мы добавили:

  • новые иконки и возможность переключаться на темную тему;
  • фильтры по зонам и литотипам, отображение уравнения линии тренда в окно кроссплота;
  • опцию "Создать по шаблону" в планшет в WITSML-клиент.
Версия от 18.12.2019

Версия от 18.12.2019

Мы добавили:

  • фильтры по зонам и литотипам;
  • конвертеры Давление - Градиент, Градиент - Давление в инструменты.

Кроме того, в окне построения гистограмм реализовано добавление нескольких кривых из разных скважин в том числе.

Версия от 21.11.2019

Версия от 21.11.2019

В модуль онлайн сопровождения мы добавили:

  • дерево с настройками обновления данных для выбора способа обновления и установки рабочего процесса;
  • загрузку данных, зависимых от времени;
  • предварительный просмотр.

Кроме того, обновлено руководство пользователя.

Версия от 25.10.2019

Версия от 25.10.2019

Мы реализовали:

  • модуль онлайн сопровождения бурения;
  • загрузку, хранение и отображение данных ГТИ, шламограмм.

Кроме того, модифицирован график для данных бурения: кривые можно располагать на отдельных треках как на планшете.

Версия от 28.09.2019

Версия от 28.09.2019

Новые улучшения:

  • в редакторе корреляций имена переменных проверяются на соответствие правилам языка Python;
  • добавлена возможность загружать точечные данные в отдельный элемент проекта;
  • синхронизированы кривая ЭЦП и кривая синтетического каверномера.
Версия от 26.08.2019

Версия от 26.08.2019

Мы усовершенствовали:

  • графики зависимостей критических плотностей от наклона и азимута;
  • библиотеку корреляционных зависимостей;
  • интерфейс модуля переноса свойств.

Версия от 30.07.2019

Версия от 30.07.2019

Мы добавили:

  • учет анизотропии прочности в расчет устойчивости ствола скважины;
  • перенос свойств на проектную скважину по нескольким опорным скважинам;
  • возможность экспорта данных скважины и геомеханической модели в «РН-ГРИД».
Версия от 02.07.2019

Версия от 02.07.2019

Новые улучшения:

  • реализован метод восстановления горизонтальных деформаций по данным о вывалах горной породы;
  • расширена функциональность модуля «Петроупругое моделирование»;
  • добавлен способ расчета порового давления с учетом изменения плотности жидкости по глубине.
Версия от 29.05.2019

Версия от 29.05.2019

Новые улучшения:

  • расширены возможности хранения и отображения гистограмм и кроссплотов;
  • реализована возможность редактирования профиля эквивалентной циркуляционной плотности на планшете при помощи контекстного меню;
  • в калькулятор ГИС добавлена возможность изменять названия переменных.
Версия от 30.04.2019

Версия от 30.04.2019

Новые улучшения:

  • добавлена возможность построения графиков зависимостей критических плотностей бурового раствора от наклона и азимута скважины;
  • возможность задавать интерактивно глубину в окне 3D изображения траектории скважины при расчете диаграмм напряжений и стереограмм плотностей бурового раствора;
  • дополнена библиотека корреляционных зависимостей.
Версия от 12.04.2019

Версия от 12.04.2019

Мы добавили:

  • возможность удобного использования библиотек pandas, scipy и numpy под псевдонимами pd, sp и np в калькулятор ГИС и редактор корреляций;
  • описание логических операций в редактор корреляций.

Кроме того, реализована возможность корректировки типа и единиц измерения уже загруженной кривой ГИС.

Основной процесс построения 1D геомеханической модели

Расчет синтетической плотности

Расчет синтетической плотности

Кривая плотности горных пород — основа для восстановления многих параметров пласта. Основным источником информации о плотности породы является плотностной гамма-гамма каротаж (ГГКп). Данный каротаж не проводится в зоне кондуктора и требует процедуры восстановления.

Построение профиля геостатического давления

Построение профиля геостатического давления

Геостатическое давление — давление вышележащих пород. В любой точке земной коры геостатическая нагрузка эквивалентна весу вышележащей толщи отложений (пород и флюидов). Геостатическая нагрузка определяется по данным ГГКп.

Построение профиля порового давления

Построение профиля порового давления

Поровое давление — это давление жидкости в порах горной породы. Методы определения порового давления: расчет гидростатического давления, методы Итона и Бауэрса с построением линии глин, метод, использующий данные о градиенте давления.

Расчет упругих свойств

Расчет упругих свойств

Пористое насыщенное тело характеризуется тремя модулями упругости: модулем Юнга, коэффициентом Пуассона и коэффициентом пороупругости. Динамические модули упругости используются для восстановления статических упругих свойств.

Расчет прочностных свойств

Расчет прочностных свойств

Прочностные характеристики — параметры, определяющие критические нагрузки, превышение которых приводит к разрушению материала. Выделяют три основных измеряемых параметра: предел прочности на одноосное сжатие, предел прочности на растяжение и угол внутреннего трения.

Построение профилей горизонтальных напряжений

Построение профилей горизонтальных напряжений

Горизонтальные напряжения — это боковые напряжения, которые испытывает порода под действием горного давления и тектонических сил. Основной способ определения – это прямой расчет по функции от горного и порового давления, а также значений тектонических деформаций.

Построение безопасного окна плотности бурового раствора (БР)

Построение безопасного окна плотности бурового раствора (БР)

Безопасное окно плотности БР — это диапазон значений эквивалентной циркуляционной плотности раствора, при котором в процессе бурения не происходит критически опасных событий: притока пластового флюида в скважину, обрушения стенки ствола скважины, поглощения раствора пластом и образования магистральных трещин.

Преимущества

Все подходы, реализованные в программном продукте «РН-СИГМА», опираются на лучшие мировые практики. «РН-СИГМА» содержит все необходимые алгоритмы и интерфейсные решения для построения одномерной геомеханической модели устойчивости ствола скважины. «РН-СИГМА» включает ряд актуальных нестандартных возможностей, таких как учет анизотропии упругих свойств, температуры и др.

Полный цикл моделирования устойчивости ствола скважины

«РН-СИГМА» позволяет выполнять полный цикл работ по сбору, анализу и предварительной обработке данных, построению 1D геомеханических моделей. На основании моделирования определяется безопасный диапазон плотности бурового раствора, а также выполняется прогноз осложнений при бурении для последующей оптимизации траектории и конструкции скважины.

Пользовательские шаблоны типовых расчетов для одновременной обработки нескольких скважин

В «РН-СИГМА» предусмотрена возможность создания рабочих процессов — последовательности методов расчета для обработки набора скважин со схожими характеристиками.

Этот инструмент позволяет существенно сократить время разработки проекта при наличии нескольких опорных скважин.

Дополнительные нестандартные возможности

Расчетное ядро «РН-СИГМА» позволяет производить расчеты устойчивости ствола скважины для анизотропных сред. Реализованные алгоритмы позволяют учесть анизотропию упругих и прочностных свойств, а также выполнять расчеты с учетом тепловых эффектов.

Пользовательские решения на языке программирования Python

«РН-СИГМА» позволяет пользователю реализовать и передать другим пользователям собственные методы расчета благодаря встроенным редактору корреляций и калькулятору ГИС. Эти инструменты используют язык программирования Python, который обладает простым в освоении и минималистичным синтаксисом. Калькулятор ГИС позволяет произвести быстрый однократный расчет, а редактор корреляций предназначен для добавления и редактирования пользовательских методов расчета для использования их наряду со встроенными методами.

Геомеханическое сопровождение бурения в режиме реального времени

Получение данных с WITSML-сервера в процессе бурения позволяет уточнить предбуровую геомеханическую модель и улучшить качество прогноза осложнений в неустойчивых интервалах пород.

Учет структурных изменений горных пород во времени

Включение в расчет изменения свойств во времени позволит выполнять расчеты устойчивости ствола скважины в зависимости от изменяющихся в процессе бурения условий в прискважинной зоне. Одним из преимуществ применения динамического моделирования является оценка допустимого времени с момента вскрытия неустойчивого интервала до момента обсадки скважины.

Понятный и простой интерфейс

Разработчики «РН-СИГМА» постарались спроектировать интерфейс таким образом, чтобы он был доступен и понятен с самого начала использования. На основе фактической обратной связи от пользователей «РН-СИГМА» успешно развивается и становится более простым и гибким инструментом.

Просто решать задачи

Набор реализованных инструментов позволяет выполнять полный цикл работ по сбору, анализу и предварительной обработке данных, построению и переносу одномерных геомеханических моделей, прогнозированию осложнений при бурении, возникающих по геологическим причинам, оптимизации траектории и конструкции скважины, расчету безопасного диапазона плотности бурового раствора.

Планы

Новые версии «РН-СИГМА» рассылаются каждые 4 недели.

  • Геомеханическое 3D моделирование на уровне скважины

    3D моделирование позволяет решать задачи напряженно-деформированного состояния породы в окрестности ствола скважины и сочленений.

    Преимущества:

    • Оценка устойчивости состояния ствола скважины в сложных геологических условиях
    • Прогноз осложнений при бурении скважин сложной конструкции
    • Повышение точности и прогнозной способности модели
    • Прогноз осложнения при бурении скважин через интервалы пород с нелинейным упругим поведением.
  • Геомеханическое 4D моделирование на уровне месторождения

    4D моделирование включает реализацию функционала сопряжения геомеханического и гидродинамического симуляторов для учета геомеханических эффектов при разработке месторождений.

    Преимущества:

    • Прогноз изменения в полях напряжений, деформаций, а также разрушения пород в процессе разработки
    • Учет влияния напряженного состояния на фильтрационно-емкостные свойства среды
    • Прогноз изменений продуктивности пласта, вызванных геомеханическими эффектами
    • Корректный перенос модели механических свойств с опорной скважины на проектную траекторию.
  • Расчет реактивации трещин и разломов

    Позволяет определить критически напряженные разломы/трещины, а также рассчитать критические пластовые давления для нарушения устойчивости разлома/трещины.

  • Оценка рисков пескопроявлений

    С помощью продвинутых алгоритмов для прогноза пескопроявлений осуществляется определение зон с повышенным риском выноса песка, расчет кубов максимально допустимой депрессии, а также определение оптимального расположения и ориентации перфорации.

  • Оценка уплотнения коллектора и проседания дневной поверхности

    Обеспечивает расчет деформаций пород коллектора, выше- и нижележащих пород, дневной поверхности.

Обучение

Регулярное проведение обучающих мероприятий способствует повышению эффективности использования и ускорению процесса внедрения программного продукта «РН-СИГМА» в рабочие процессы.

Цель и аудитория

Цель и аудитория

В результате обучения слушатели получают знания о предмете и задачах геомеханики при бурении и навыки работы с программным продуктом «РН-СИГМА».

В целевую аудиторию входят специалисты в области планирования и сопровождения бурения, геомеханики и смежных областей.

Структура курса

Структура курса

  1. Лекция по теории геомеханики с практическими примерами (3,5 + 3,5 часа).
  2. Лекция по принципам и общим подходам к построению одномерных геомеханических моделей (2 часа).
  3. Знакомство с «РН-СИГМА», работа с инструментами (1,5 час).
  4. Пример построения одномерной модели устойчивости ствола скважины (3,5 часа).
  5. Самостоятельная работа с готовым примером данных, либо с примерами участников (5 часов).
  6. Примеры работы с вспомогательными модулями (2 часа).
Проведённые семинары

Проведённые семинары

За два года проведено 9 обучающих семинаров в Уфе, Москве и Тюмени, в которых приняли участие более 100 слушателей.

Кто использует

Программный продукт «РН-СИГМА» используется специалистами в области геомеханики из более чем 15 дочерних обществ ПАО «НК «Роснефть» (150+ лицензий).