

ГЕОМЕХАНИЧЕСКИЙ СИМУЛЯТОР **РН-СИГМА**ОБЗОР ВОЗМОЖНОСТЕЙ

Геомеханическое моделирование

Описание

РН-СИГМА — программный продукт для решения задач геомеханического моделирования и анализа устойчивости ствола наклонно-направленных и горизонтальных скважин

РИСКИ ПОГЛОЩЕНИЯ И ГИДРОРАЗРЫВА

Преимущества

Все подходы, используемые в программном продукте РН-СИГМА, опираются на лучшие мировые практики:

- Полный цикл моделирования устойчивости ствола скважины
- Пользовательские шаблоны типовых расчетов для одновременной обработки нескольких скважин
- Геомеханическое сопровождение бурения в режиме реального времени
- Уникальные модели устойчивости (вязкоупругость, автоГРП, кластеризация и др.)

Планы

- Геомеханическое 3D моделирование на уровне скважины
- Геомеханическое 4D моделирование на уровне месторождения
- Оценка уплотнения коллектора и проседания дневной поверхности

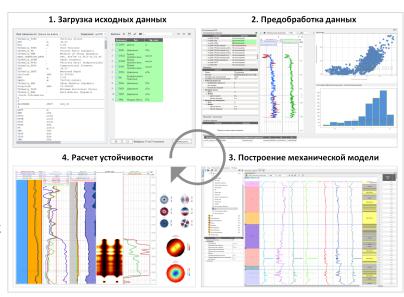
Сравнение РН-СИГМА с аналогами

Функциональные возможности	РН-СИГМА	Schlumberger Techlog	LithoStudio	Геонафт
Интерфейс пользователя, загрузка, сохранение и визуализация данных, формирование отчета	+	+	+	+
Построение 1D стационарной геомеханической модели	+	+	+	+
Расчет напряженного состояния для изотропной среды	+	+	+	+
Расчет напряженного состояния для анизотропной среды	+	+	+/-	+
Выбор различных критериев прочности пород	+	+	+	+
Определение безопасного окна плотности бурового раствора	+	+	+	+
Расчет напряженного состояния с учетом мгновенных термальных напряжений	+	+	_	+
Предобработка данных ГИС (анализ качества, нормализация, восстановление, увязка, сшивка)	+	+	+/-	+/-
Интерпретация данных ГИС	+	+	+	+
Наличие базы корреляционных зависимостей	+	+	+	+
Геомеханическое сопровождение бурения в режиме реального времени	+	+	+	+
Построение 1D динамической геомеханической модели	+	+	_	_
Оценка рисков пескопроявлений и разрушения цементного кольца в процессе эксплуатации	+	+	_	+/-

РН-СИГМА. Общая информация

1D стационарная геомеханическая модель для решения стандартных задач устойчивости ствола скважины

- Интерфейс пользователя, загрузка, сохранение и визуализация данных, формирование отчета
- Построение 1D стационарной геомех. модели
- Расчет напряженного состояния для изотропной среды.
- Расчет напряженного состояния для анизотропной среды.
- Выбор различных критериев прочности пород
- Определение безопасного окна плотности бурового раствора
- Расчет напряженного состояния с учетом мгновенных термальных напряжений
- Предобработка данных ГИС (анализ качества, нормализация, восстановление, увязка, сшивка)
- Интерпретация данных ГИС
- Наличие базы корреляционных зависимостей для геомеханических свойств


Геомеханическое сопровождение в процессе бурения

 Геомеханическое сопровождение бурения в режиме реального времени

1D динамическая геомех. модель для учета структурных изменений горных пород во времени

- Построение 1D динамической геомех. модели
- Оценка рисков пескопроявлений и разрушения цементного кольца в процессе эксплуатации

Достоверное моделирование всех физических процессов

Изотропная среда

Критерии разрушения породы

Анизотропная среда

> Напряженнодеформированное состояние скважины и пласта

Идеальная пластичность

Приток в скважину

Пескопроявление

Тепловые эффекты

Осмотические эффекты

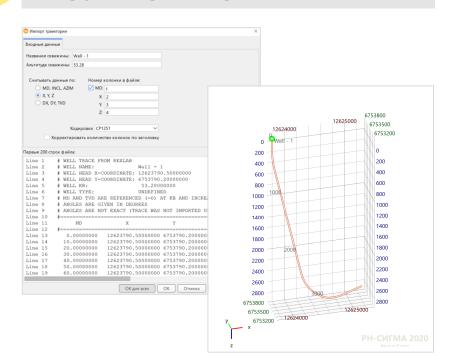
Поглощение жидкости

Устойчивость ствола скважины

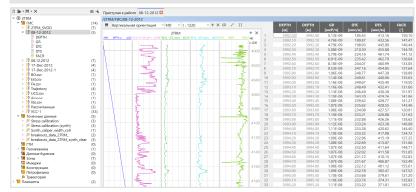
Анализ тектонического режима

Динамическая вязкоупругость

Построение паспорта прочности

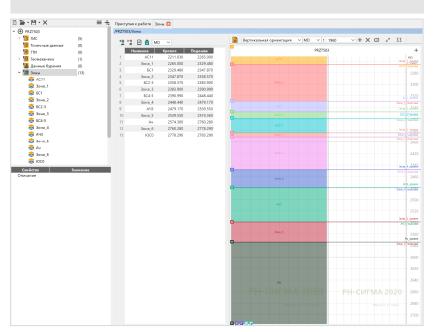

Реактивация трещиноватости

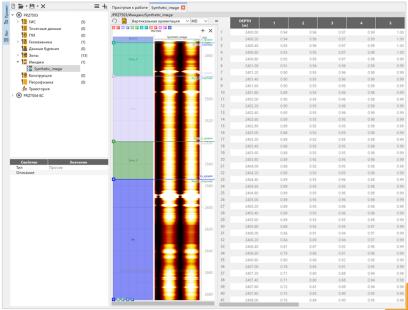
Динамическая поротермоупругость



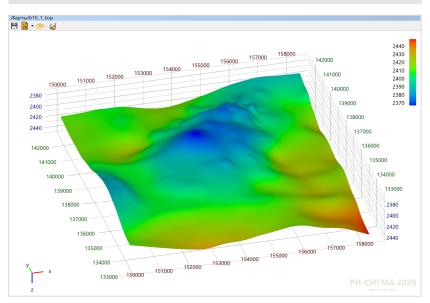
Загрузка траектории

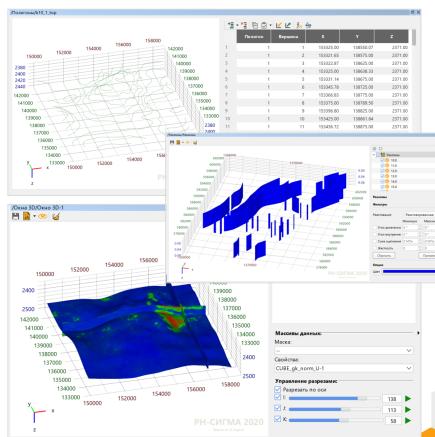
Загрузка данных ГИС


Загрузка точечных данных

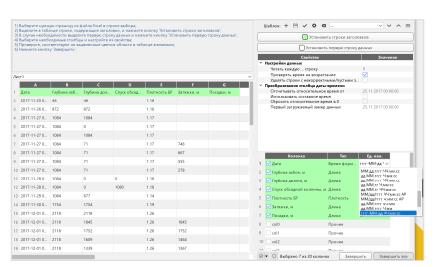


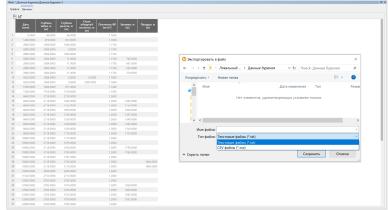
Загрузка стратиграфических отбивок/зон


Загрузка данных микроимиджеров (в форматах dlis, dls, las)

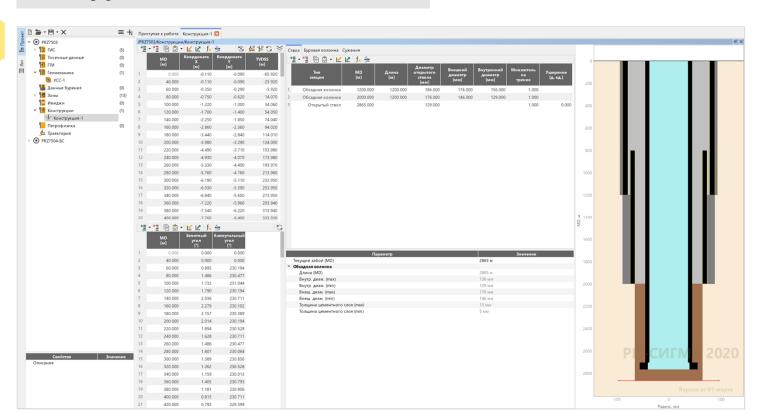


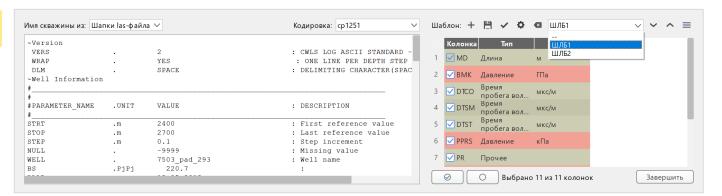
Загрузка карт, полигонов, кубов, разломов/трещин и точек

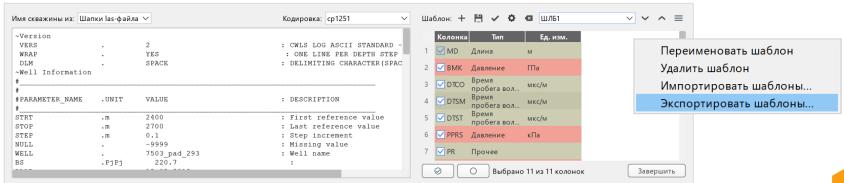




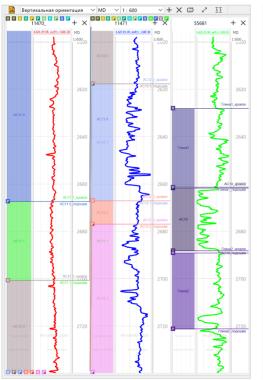
Загрузка данных бурения

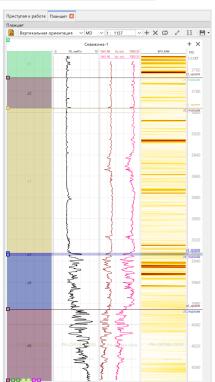

Данные бурения — это данные отчетов о бурении, в которых записана информация о прохождении процесса бурения скважины. Отчеты о бурении содержат информацию в виде зависимости различных технологических параметров и событий от времени.

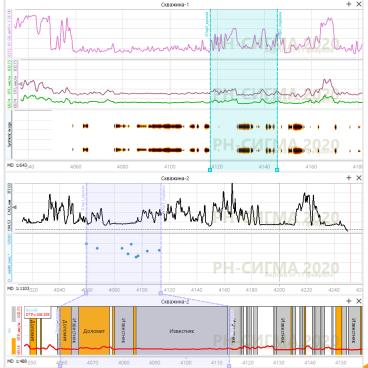

Конструкция скважины



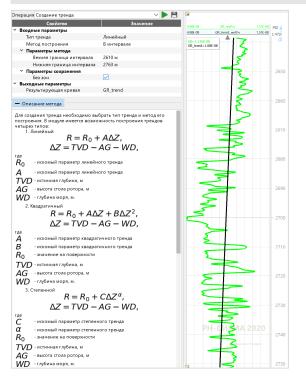
Шаблоны загрузки данных

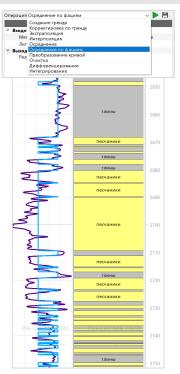


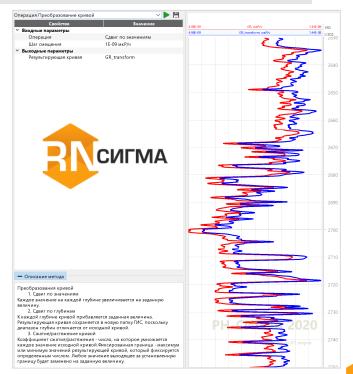




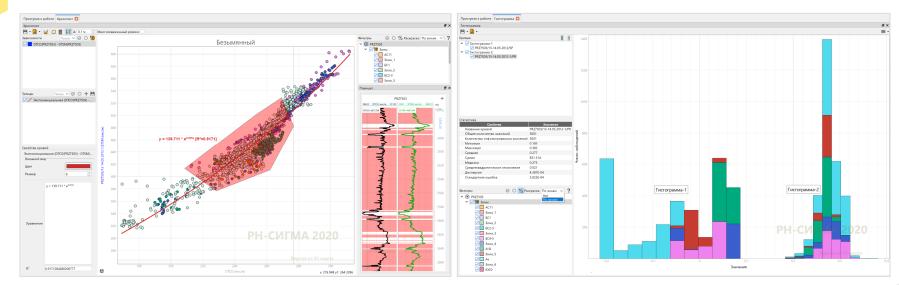
Многофункциональный планшет



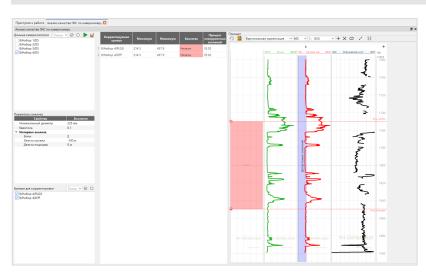


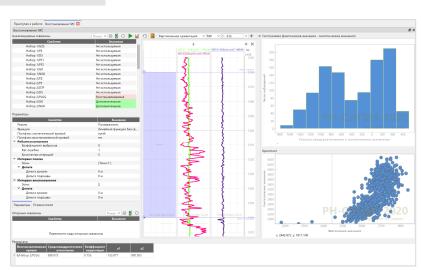


Стандартные операции с данными ГИС: создание тренда, интерполяция, осреднение, преобразование данных, очистка и т.д.

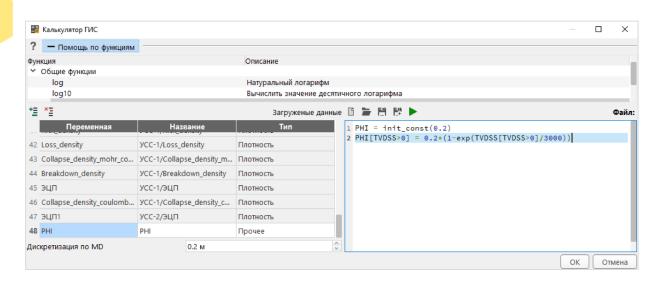


Анализ данных: построение гистограмм и кроссплотов


Кроссплот позволяет строить корреляционные зависимости между двумя определенными свойствами как для одной скважины, так и для нескольких


Гистограммы и кроссплоты можно раскрасить по выбранным фильтрам, выбрав соответствующий тип раскраски в выпадающем списке

Обработка данных: анализ качества; увязка, калибровка, сшивка; нормировка; восстановление; увязка

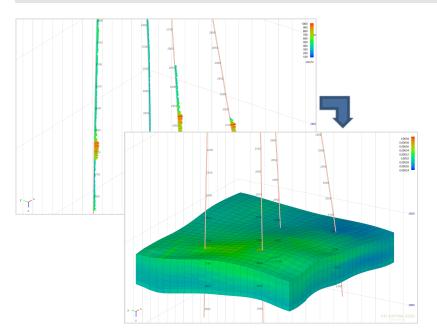


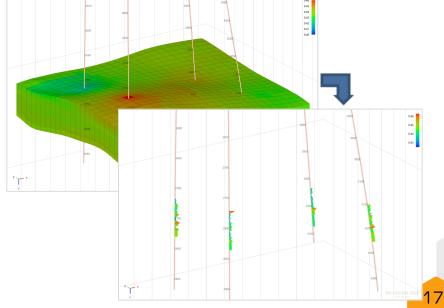
Инструменты обработки данных ГИС позволяют выполнить ряд операций по экспресс–анализу и предварительной обработке исходных данных. Данная функциональность полезна в случае отсутствия возможности получения предобработанных данных.

В основе применения инструментов обработки данных лежит базовый рабочий процесс повышения качества данных ГИС и керновых исследований.

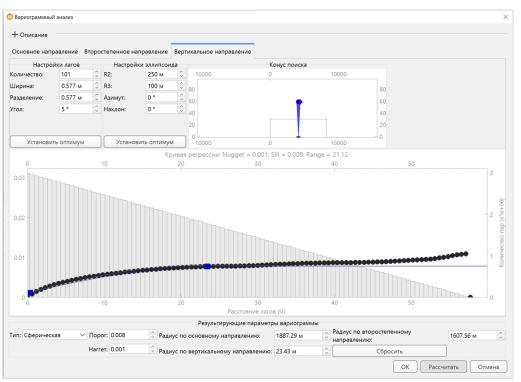
Калькулятор ГИС

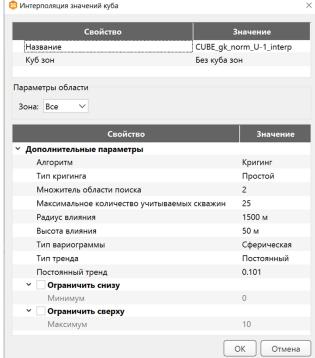
Калькулятор данных ГИС — инструмент, который позволяет пользователю использовать язык программирования Python для создания своих алгоритмов работы с данными ГИС.


Калькулятор предназначен для выполнения сложных или нестандартных операций над данными ГИС.

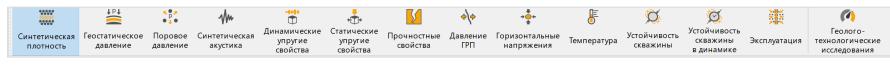

Окно калькулятора содержит помощник по встроенным функциям.

Работа с кубами и поверхностями: преобразование карт в зоны, построение ГИС по данным куба свойств, построение куба по данным ГИС, интерполяция значений куба

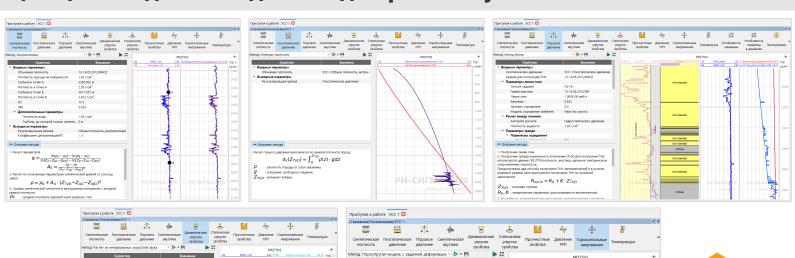


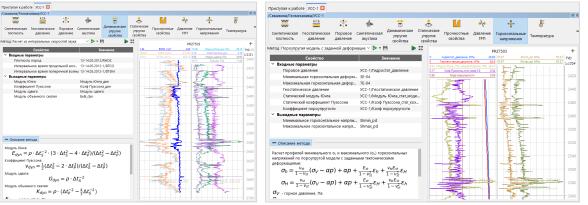


Вариограммный анализ

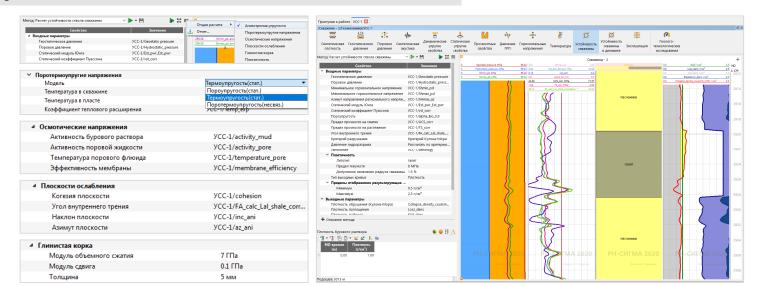


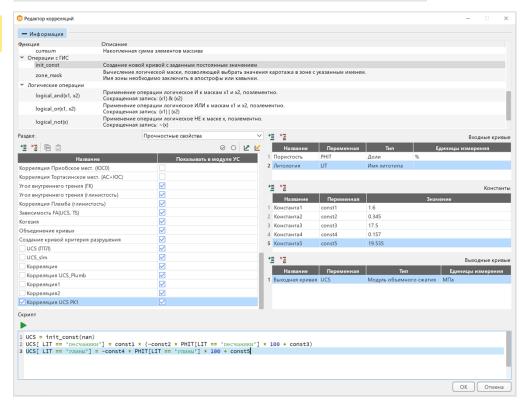
Общий цикл подготовки данных для расчета устойчивости ствола скважины

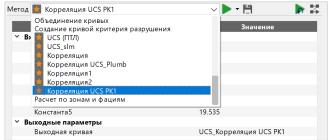



- 🎆 Расчет объемной (синтетической) плотности пород
- 🚆 Расчет геостатического давления
- 🏗 Расчет порового давления
- Расчет синтетического акустического каротажа
- 📸 🛮 Расчет динамических упругих свойств породы
- 🚠 Расчет статических упругих свойств породы
- 🚺 Расчет прочностных свойств породы
- 🚸 🛮 Расчет давления гидроразрыва пласта
- Расчет горизонтальных напряжений
- F Расчет температуры и коэффициента температурного расширения породы
- 💢 Расчет стационарной устойчивости ствола скважины
- 🌠 Расчет динамической устойчивости ствола скважины
- 🇱 Расчет устойчивости ствола скважины в процессе эксплуатации

Общий цикл подготовки данных для расчета устойчивости ствола скважины



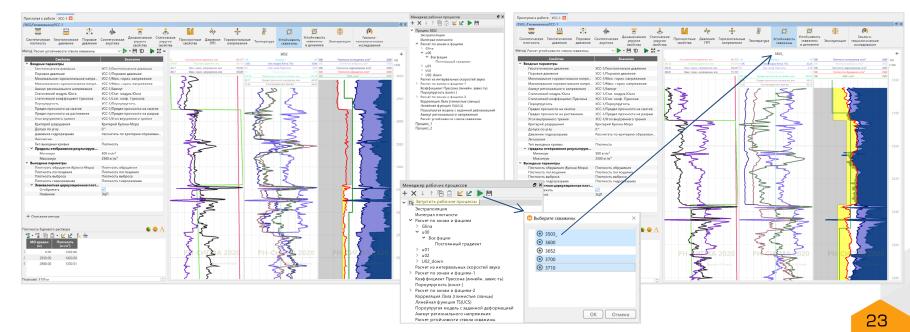

- Расчет зависимости от принадлежности к литологическим фациям/зонам
- Расчет температурных, осмотических, пороупругих эффектов
- Расчет в среде с анизотропией упругопрочностных свойств

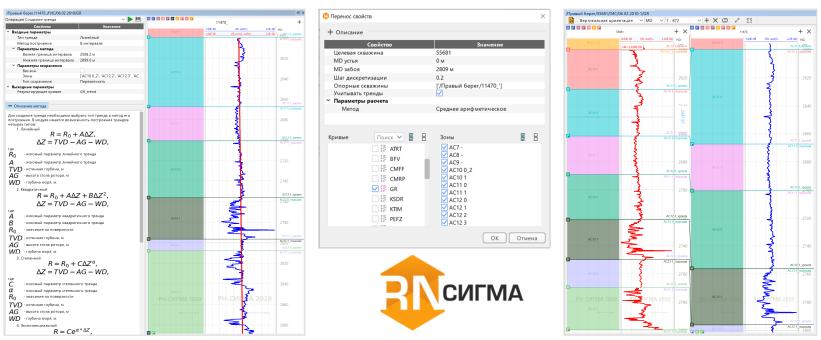


Редактор корреляций

Редактор корреляций предназначен для ввода пользовательских формул для зависимостей, которых нет в программном комплексе.

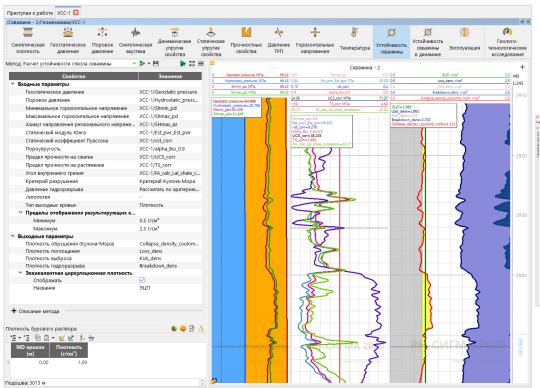
Пользовательская корреляция после сохранения попадает в базу корреляций и становится доступна в качестве метода расчета в соответствующем разделе окна по расчету устойчивости.



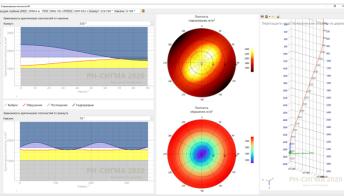

Менеджер рабочих процессов

Рабочий процесс— это последовательность методов, которую можно сформировать и настроить на одной скважине, сохранить, а затем применить к другим скважинам.

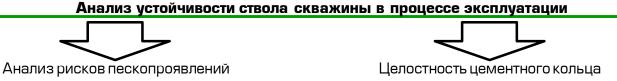
Перенос результатов расчета модели на другие скважины



Перенос свойств без учета стратиграфических отбивок осуществляется по абсолютным глубинам. При переносе свойств по стратиграфическим отбивкам в рамках каждого интервала выполняется параллельный перенос с соответствующим коэффициентом сжатия/растяжения.


Также реализован перенос свойств с учетом тренда нормального уплотнения. Для этого есть возможность создания тренда для элемента данных.

Статическая задача устойчивости



1D динамическая геомеханическая устойчивость ствола скважины

В ПК РН-СИГМА реализовано:

- Модель расчета НДС (напряженно-деформированного состояния) вдоль ствола скважины с учетом влияния процессов фильтрации и теплопередачи
- Модель расчета НДС вдоль ствола скважины с учетом свойств ползучести пород
- Оценка влияния глинистой корки на устойчивость ствола скважины (УСС)
- Расчет безопасной депрессии для снижения риска обрушения слабосцементированных пород и разрушения цементного кольца скважины в процессе эксплуатации
- Алгоритм расчета УСС при изменении свойств во времени

Расчет НДС пласта с учетом влияния процессов фильтрации и теплопередачи

Решение можно представить в виде: $p = p_0^{(1)} + p^{(2h)} + p^{(2t)}$, $\sigma_{ij} = \sigma_{ij}^{(1)} + \sigma_{ij}^{(2h)} + \sigma_{ij}^{(2t)}$,

(1) – решение в отсутствие поротермоупругих эффектов, (2h) – добавка к решению, вызванную наличием фильтрации, (2t) – добавка к решению, вызванную наличием термических эффектов.

Задачи:

- 1. Расчет устойчивости с учетом фильтрационных напряжений (модель несвязанной пороупругости)
- 2. Расчет устойчивости с учетом термических напряжений (модель несвязанной термоупругости)
- 3. Расчет устойчивости с учетом фильтрационных и термических напряжений в несвязанной постановке (модель несвязанной поротермоупругости)
- 4. Расчет устойчивости с использованием связанной поротермоупругой модели

Особенности:

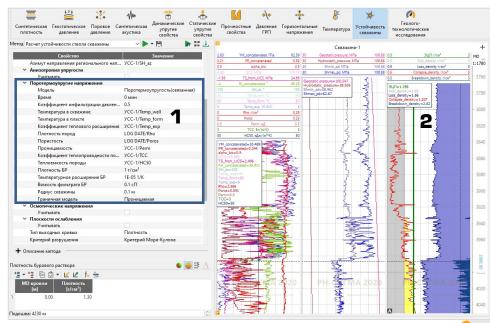
- В условиях высокопроницаемого пласта (проницаемость выше 1 мД) для моделирования устойчивости ствола применима модель несвязанной пороупругости;
- Основным объектом применения модели связанной поротермоупругости являются пласты со сверхнизкой проницаемостью (менее 1 мкД);
- Дополнительно введен коэффициент инфильтрации давления в пласт для учета проницаемости глинистой корки, находящейся на поверхности скважины.

Статическая постановка

Динамическая постановка

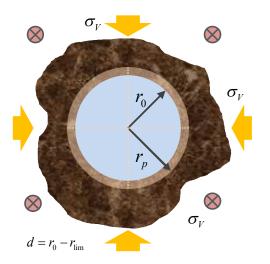
Расчет НДС пласта с учетом влияния процессов фильтрации и теплопередачи

Модель связанной поротермоупругости позволяет учитывать одновременное воздействие фильтрации жидкости и теплопереноса на напряженное состояние в прискважинной зоне

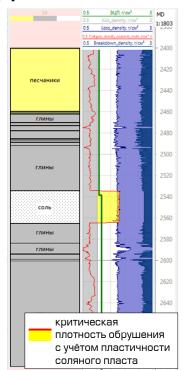

1— область задания входных параметров

2— планшет с отображением входных параметров и результатов расчета

Возможность расчета устойчивости ствола скважины с учетом поротермоупругости в динамической постановке



Реализация расчета УСС с учетом поротермоупругости в ПК «РН-СИГМА»

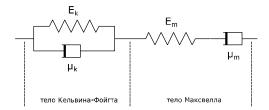


Расчет НДС пласта с учетом пластических свойств пород

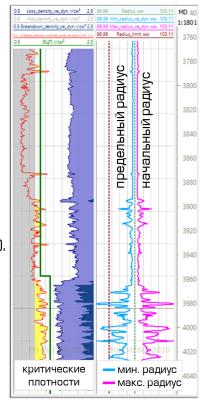
Проявление пластических деформаций характерно для солевых отложений и обусловлено недостаточным противодавлением, несоответствием типа бурового раствора составу пород, а также влиянием термодинамических процессов.

Пример расчета в ПК «РН-СИГМА»

Реализованный алгоритм основан на аналитическом решении задачи о напряженно-деформированном состоянии скважины с идеально-пластической зоной вокруг, находящейся под действием внутреннего давления в поле равномерно сжимающего напряжения.


- 1. Расчет напряженного состояния в системе.
- 2. Расчет внутреннего радиуса скважины.
- Определение критических давлений для предотвращения чрезмерной деформации скважины.

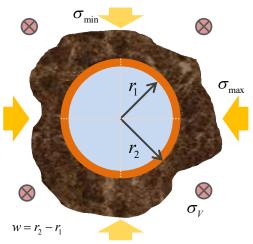
Расчет НДС пласта с учетом свойств ползучести пород


Реологическая модель вязкоупругого поведения (модель Бюргерса):

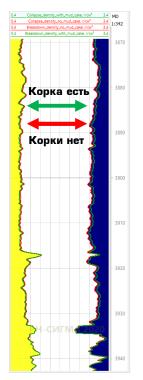
$$\varepsilon_z = \frac{\sigma_z}{E_m} + \frac{\sigma_z}{E_k} \left(1 - \exp\left(-\frac{t}{\mu_k/E_k}\right) \right) + \frac{\sigma_z}{\mu_m} t$$

 $arepsilon_z$ — осевая деформация, σ_z — осевая нагрузка, t — время, E_k, μ_k — модуль упругости и вязкость (тело Кельвина—Фойгхта), E_m, μ_m — модуль упругости и вязкость (тело Максвелла)

Ползучесть — это изменение со временем деформации тела при постоянной нагрузке. Свойство ползучести характерно для глинистых пород.


Реализованный алгоритм основан на **аналитическом решении** задачи о постоянном обжиме среды со скважиной, заполненной жидкостью под давлением.

- 1. Расчет напряженного состояния в системе.
- 2. Расчет критических плотностей обрушения и образования трещины.
- 3. Расчет вектора изменения формы скважины согласно модели ползучести.


Оценка влияния глинистой корки на устойчивость ствола скважины

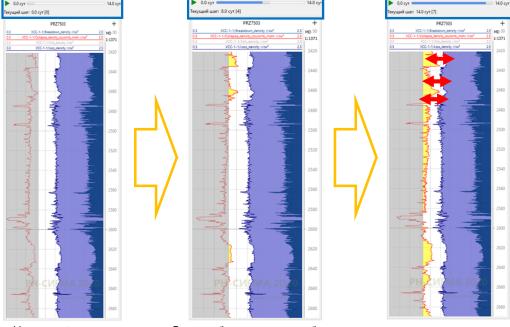
w - толщина глинистой корки

Глинистая корка образуется на поверхности скважины и препятствует утечкам жидкости в пласт, т.е. способствует стабилизации интервала пород. Наибольший эффект проявляется для трещиноватых принимающих жидкость интервалов пород и может достигать изменения критической плотности на порядка 0.1 г/см³.

Пример расчета в ПК «РН-СИГМА» Реализованный

алгоритм основан аналитическом решении задачи напряженном состоянии скважины упругим кольцом поверхности, находящейся под действием внутреннего давления поле напряжения произвольного вида.

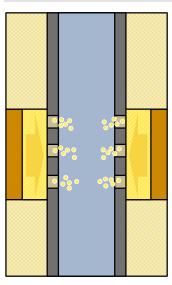
- 1. Расчет напряженного состояния в присутствии глинистой корки.
- Расчет напряжений на границе между глинистой коркой и породой.
- 3. Расчет критериев прочности породы.
- 4. Определение критических плотностей обрушения и гидроразрыва.



Оценка безопасного времени при бурении и эксплуатации ствола скважины

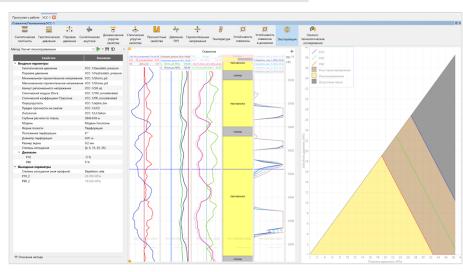
- В ПК «РН-СИГМА» реализован **Динамический модуль**, выполняющий:
- Учет изменений упруго-прочностных свойств горных пород во времени в процессе бурения для оценки времени устойчивости ствола скважины (УСС) с момента вскрытия неустойчивого интервала пород;
- Расчет НДС пласта при различных условиях эксплуатации скважины для оценки безопасного времени эксплуатации ствола скважины.

Расчет УСС при изменении во времени предела прочности на сжатие


Начальный момент времени

Сужение безопасного окна бурения во времени

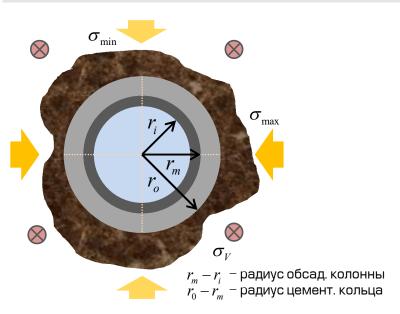
Конечный временной шаг


Анализ рисков выноса твердой фазы вдоль ствола скважины для слабосцементированных пород

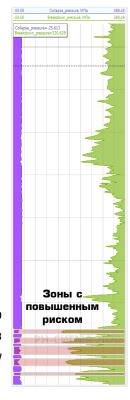
Изменение условий эксплуатации скважины во времени приводит к изменению напряженного состояния в окрестности ствола скважины и, как следствие, к возможному образованию зон разрушения и выноса песка.

Решаемые задачи:

- Расчет безопасной депрессии для снижения риска обрушения слабосцементированных пород
- Определение зон с повышенным риском выноса песка вдоль ствола скважины.


Модели оценки критической депрессии, реализованные в ПК «РН-СИГМА»:

- Willson
- Hettema

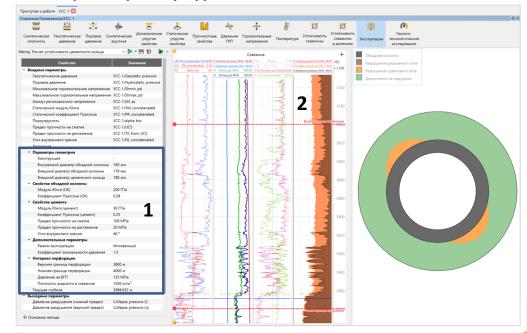

Обе модели применимы для прогноза выноса твердой фазы для любых скважин независимо от типа флюида, а также включают 2 варианта расчета: с истощением и без истощения пластового давления.

Оценка рисков разрушения цементного кольца вдоль ствола скважины

Изменение условий эксплуатации скважины (давление) во времени приводят к изменению напряженного состояния в цементном кольце и, как следствие, к возможному образованию зон разрушения цементного кольца.

Реализованный алгоритм основан аналитическом решении задачи напряженном состоянии скважины с двумя концентрическими **УПРУГИМИ** кольцами поверхности, находящейся действием внутреннего давления в поле напряжения произвольного вида.

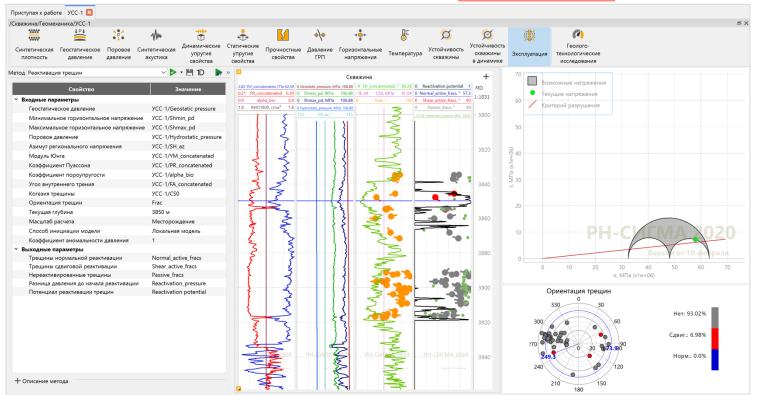
- 1. Расчет напряженного состояния вдоль ствола скважины.
- Расчет напряжений на границах между цементом и породой и между обсадной колонной и цементом.
- 3. Расчет критериев прочности цементного кольца на обеих поверхностях.
- 4. Определение критических давлений эксплуатации.


Расчет безопасной депрессии и определение зон с риском разрушения цементного кольца

Расчет выполняется в двух режимах:

- 1. Режим статической эксплуатации: режим, при котором пластовое давление равно давлению в скважине. В этом режиме определяются зоны риска разрушения цементного камня.
- 2. Режим мгновенной нагрузки: режим, при котором давление в скважине определяется независимо от пластового (ГРП, перевод в нагнетание). Определяются предельные допустимые давления нагрузки.

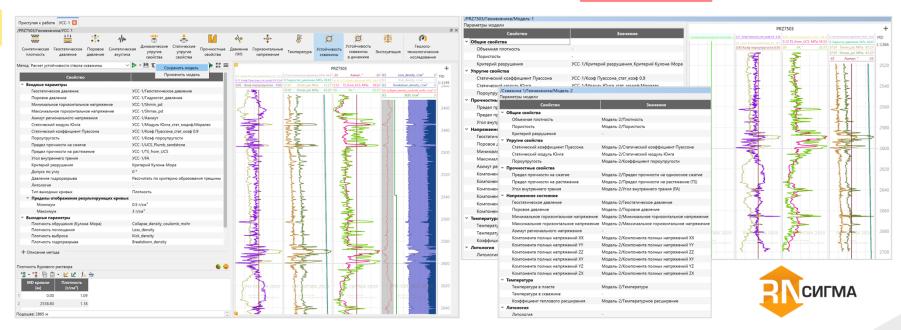
Реализация расчета рисков разрушения цементного кольца в ПК «РН-СИГМА»



- 1 область задания входных параметров
- 2 планшет с отображением входных параметров и результатов расчета

Расчет реактивации трещин

НОВЫЙ ФУНКЦИОНАЛ (Отображение стереограммы)

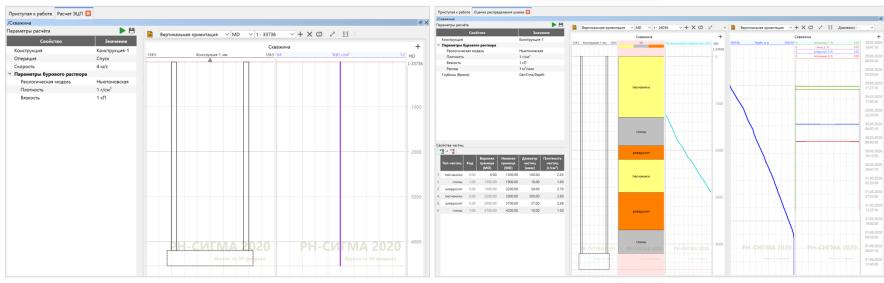


Построение одномерной геомеханической модели

Элемент одномерной геомеханической модели

НОВЫЙ ФУНКЦИОНАЛ

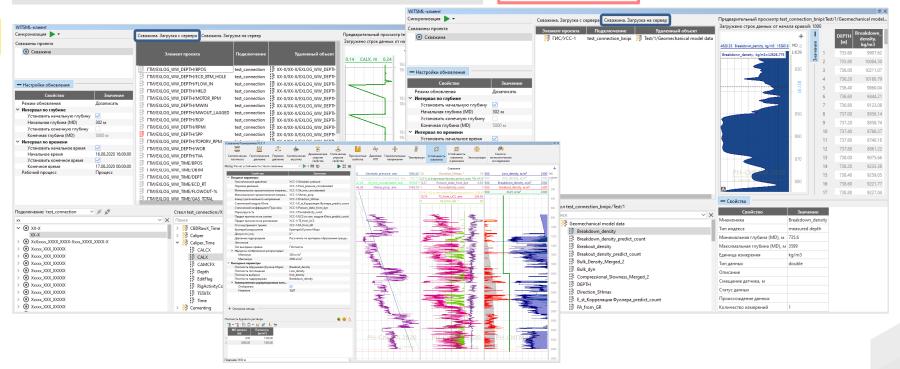
Элемент 1D модели – сохраняемый набор ГИС.


С помощью элементов 1D модели можно хранить различные варианты моделей и быстро к ним возвращаться.

Гидравлические расчеты

Расчет ЭЦП. Оценка распределения шлама

Расчет эквивалентной циркуляционной плотности бурового раствора


Оценка распределения шлама по стволу скважины

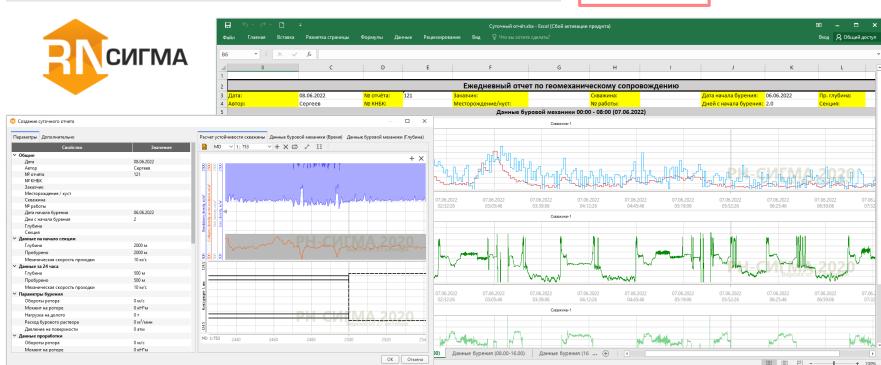
WITSML-клиент

Загрузка данных с сервера/на сервер

НОВЫЙ ФУНКЦИОНАЛ (Загрузка на сервер)

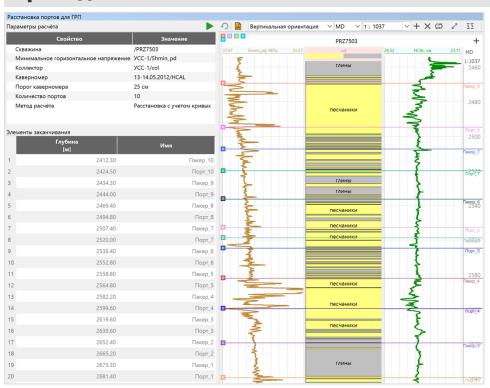
После загрузки данных с сервера в проект происходит обновление 1D геомеханической модели согласно выбранному рабочему процессу. Далее результаты моделирования загружаются из проекта на сервер.

Анализ качества данных геолого-технологических исследований

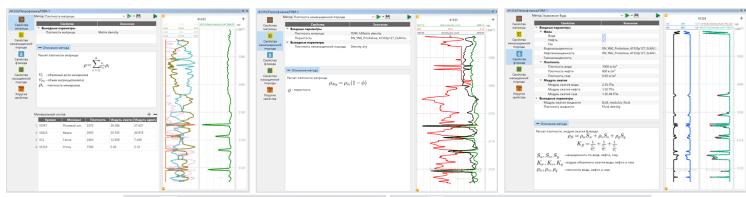


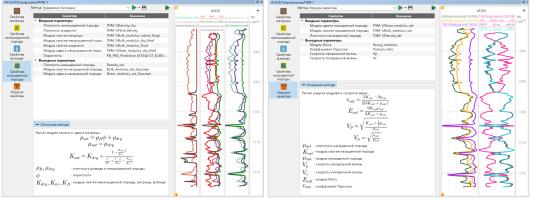
Анализ качества данных ГТИ позволяет провести первичную статистическую обработку данных ГИС, а именно выявить выбросы среди значений анализируемых данных.

Выгрузка суточной отчетности в формате XLSX

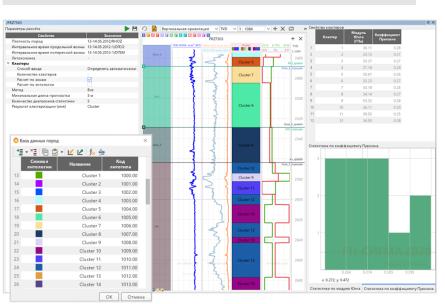

НОВЫЙ ФУНКЦИОНАЛ

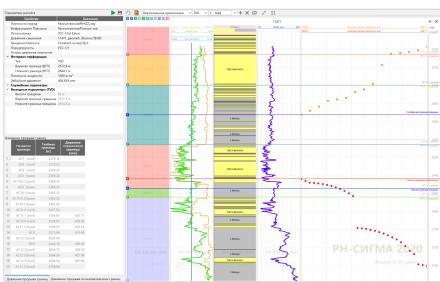
Оценка оптимальных интервалов для размещения портов при проведении ГРП


Методы расчета:

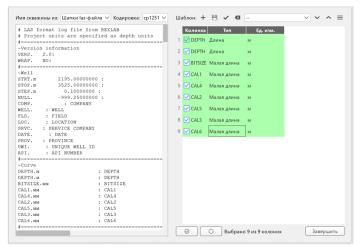

- Расстановка с учетом кривых предполагает наличие кривых с минимальным горизонтальным напряжением, каверномером и колонки с коллектором.
- **Равномерная расстановка** предполагает распределение портов и пакеров на одинаковом расстоянии друг от друга.

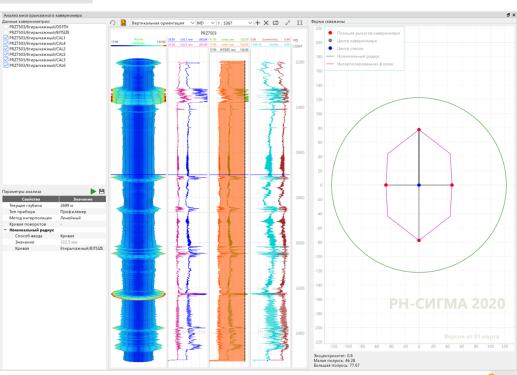
Петроупругое моделирование





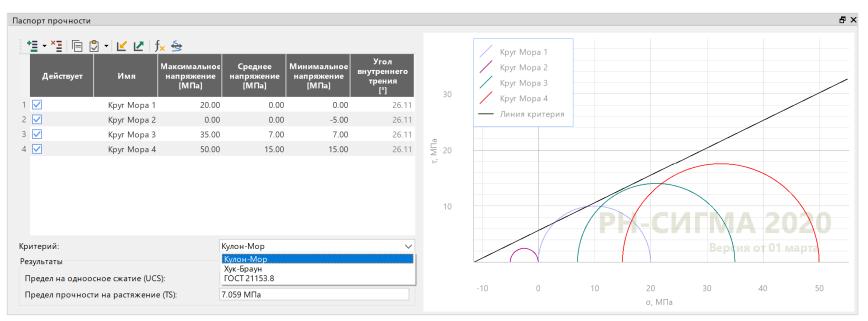
Кластеризация


Расчет высоты трещины автоГРП

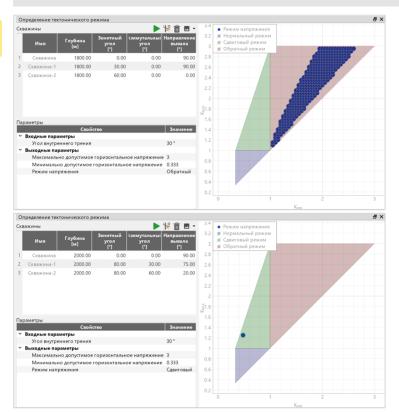

Анализ многорычажного каверномера

Результатом расчета являются элементы данных с малой и большой полуосью, которые отображаются на планшете совместно с линией номинального радиуса.

Доступны 4 типа прибора:


- Шестирычажный профилемер;
- Четырехрычажный профилемер;
- Двухрычажный профилемер;
- Произвольный профилемер.

Паспорт прочности

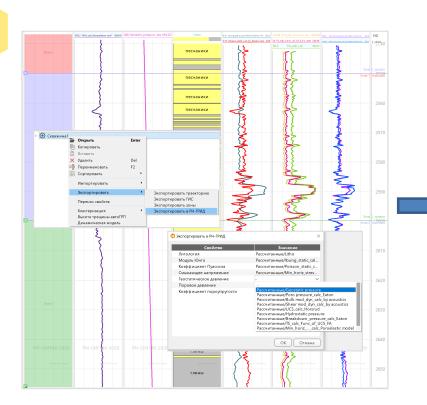


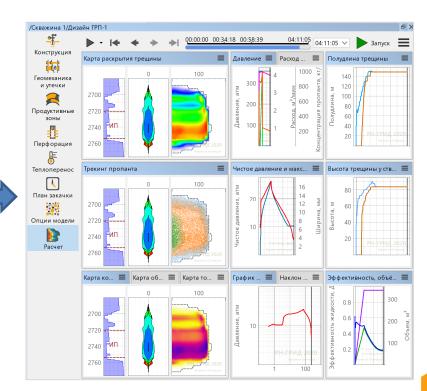
Паспортом прочности материала называется поверхность разрушения в пространстве напряжений. Для корректного снятия паспорта прочности необходимы экспериментальные данные о параметрах разрушения материала, находящегося в состоянии псевдо-трехосного или истинного трехосного обжатия.

Реализованы три способа построения паспорта прочности: по критерию Кулона-Мора, по критерию Хука-Брауна, а также на основе ГОСТ 21153.8

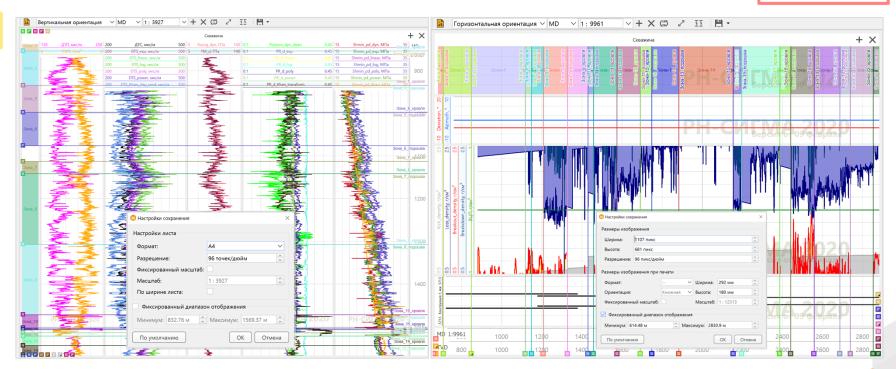
Определение тектонического режима

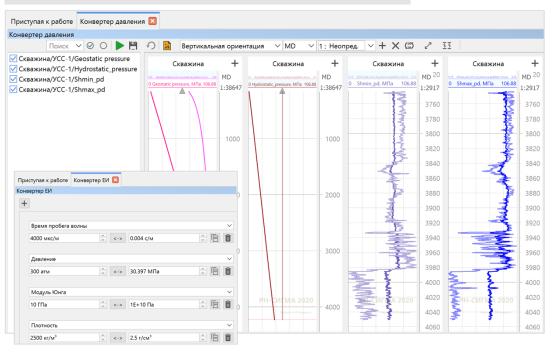
Для того, чтобы произвести расчет, необходимо наличие в таблице двух наклонных и одной вертикальной скважин.


После произведения расчета будут выведены значения максимального и минимального допустимых горизонтальных напряжений, режим напряжения, а также график результата расчета.


СИГМА

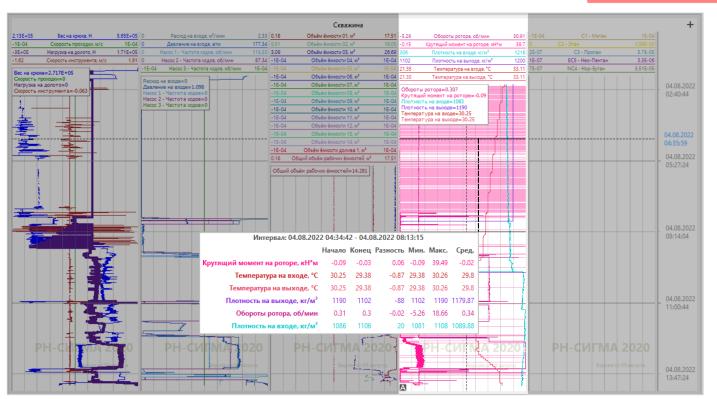
Экспорт 1D модели в симулятор ГРП «РН-ГРИД»




Экспорт планшета высокого разрешения в форматы PDF, PNG

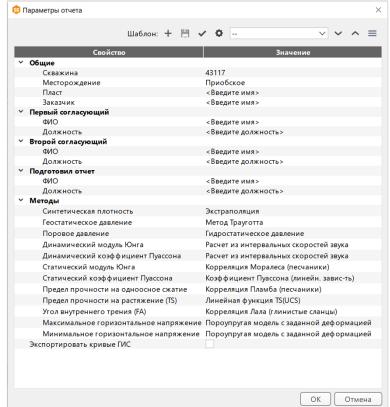
НОВЫЙ ФУНКЦИОНАЛ

Конвертеры


- «Давление Градиент» инструмент для расчета профиля градиента давления на основании профиля давления (численное дифференцирование);
- «Градиент Давление» инструмент для расчета профиля давления на основании профиля градиента давления (численное интегрирование);
- «Давление Плотность» —инструмент для расчета профиля плотности на основании профиля давления;
- «Плотность Давление» –инструмент для расчета профиля давления на основании профиля плотности;
- Конвертер ЕИ калькулятор для конвертации значений физических величин между разными системами единиц измерения.

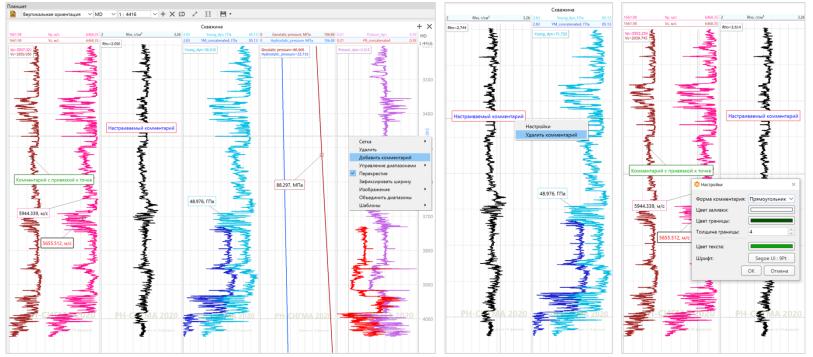
Статистика по кривым в выделенном интервале

НОВЫЙ ФУНКЦИОНАЛ


Формирование отчета пользователя по результатам расчетов

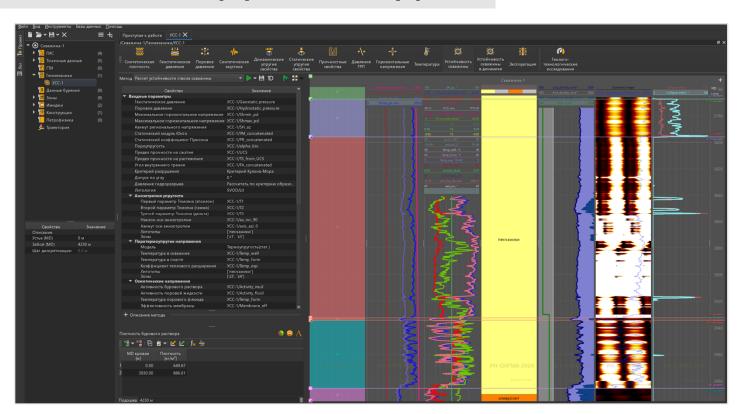
Отчет содержит:

- Титульный лист с общей информацией, указанной пользователем
- Таблицу с исходными данными ГИС
- Таблицу со стратиграфическими отбивками
- Планшеты рассчитанных свойств согласно методам, указанным при настройке параметров отчета
- Итоговый планшет с результатами расчета устойчивости ствола скважины

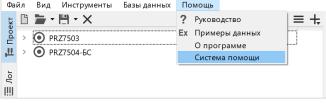


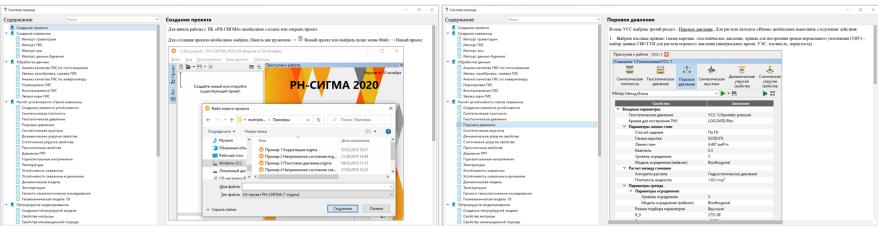
Добавление комментариев на планшете

НОВЫЙ ФУНКЦИОНАЛ


Опция «Добавить комментарий» добавляет настраиваемый комментарий на планшет.

Кроме того, имеется возможность добавления на планшет комментария с привязкой к определенной точке ГИСа.


Опция темной темы оформления интерфейса



Система помощи

Система помощи— это система кратких инструкций для помощи при работе с различными элементами интерфейса. Окно содержит пошаговые описания основных сценариев по работе в ПК «РН–СИГМА» и состоит из двух частей:

- Древовидная структура модулей программы;
- Основной блок с описанием выбранного модуля.

Служба технической поддержки

rnsigma@bnipi.rosneft.ru

Менеджер проекта

Федоров Александр Игоревич:

FedorovAI-ufa@bnipi.rosneft.ru

https://rn.digital/rnsigma/